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1. Introduction

The role of mercury in the formation of various 
neuropathologies is well known (O’Donoghue et al., 
2020), including neurodegenerative diseases (Cariccio 
et al., 2019); it has been proven, in particular (Lee 
et al., 2018; Bjørklund et al., 2019; Siblerud et al., 
2019; Azar et al., 2021), that mercury can cause the 
development of Alzheimer’s disease. It can also lead 
to the development of brain tumors (Bjørklund et al., 
2020) and the development of autism in children (Kern 
et al., 2020; Kaur et al., 2021), which is caused by 
disturbances in the machinery of neuro(morpho)genesis 
and impaired efficiency of connectome development 
(Abbot and Nigussie, 2021). Such effects may be due to 
exposure to mercury at the early stages of development, 
as well as at the most vulnerable stages of age-related 
physiology (Dórea et al., 2020). Effects of this type are 
also observed in marine mammals (López-Berenguer 
et al., 2020) inevitably exposed to mercury due to its 
presence in seawater (Brown et al., 2018; Wang et al., 
2021; Jinadasa et al., 2021).

However, until recent years, there have been 
practically no works on the effects of mercury on the 
development of the neural structure of the brain of 
marine mammals during natural or model exposure 

to mercury, and, moreover, no works with dynamic 
observation of development with such exposure of their 
surviving brain slices under time-lapse microscopy 
and multi-angle 3D imaging techniques (confocal 
microscopy, SPIM, microtomography, holography, and 
holographic microscopy), which would answer the 
question of Hg-inhibitor diffusion in space and time. 
How does axonal guiding / axonal pathfinding change 
with introducing amounts of mercury characteristic 
of natural exposure into the nervous tissue? However, 
full-scale studies of this on marine mammals have not 
been conducted.

The situation is even worse with the study of the 
reactivity of the nervous system in fish to introducing 
mercury into the environment. Analyzing recent 
literature (because the author has not studied the 
nervous tissues of fish since 2015 (Gradov, 2015), due 
to the lack of equipment and infrastructural capabilities 
to maintain them), we came to a paradoxical, in fact, 
conclusion. Despite the increase in works postulating 
the toxic effect of mercury demonstrated on fish (up 
to its toxicokinetics and biotransformation at various 
stages of this effect) and works postulating mercury 
contamination under various hydrochemical conditions 
(Zheng et al., 2019; Jinadasa and Fowler, 2019; Wang 
and Wang, 2019; Mendes et al., 2019; Lahrich and El 
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Mhammedi, 2019; Rahmanikhah et al., 2020; Tamele 
and Vázquez Loureiro, 2020; de Paula Gutierrez and 
Agudelo, 2020; Askary Sary, 2020; Mahmudiono et 
al., 2020; Canham et al., 2021), the number of works 
describing and interpreting this effect at the cellular level, 
providing cytophysiological, immunohistochemical and 
morphometric data, allowing quantifying the effects 
with topographic reference, is extremely small (Pereira 
et al., 2019). 

2. Materials and methods

Our approach implemented in this work was 
based on methods that provide for the dynamic study 
of frames with the dynamics of axonal pathfinding with 
a timecode, based on which it is possible to track vector 
displacement fields and reaction-diffusion processes 
in the culture immediately after introducing a drop 
of mercury or a liquid containing mercury using a 
capillary patch pipette. In this paper, we describe the 
method for the first time and test it on data, according 
to generally accepted ideas, proving (at a didactically 
understandable level) the presence of effects of exposure 
to mercury on neurogenesis. We initiated work on more 
complex neural structures, but their results, due to 
the multiplicity of interacting elements of the neural 
structure of the brain, are more difficult to describe and 
interpret and require reference to unpublished data. 
Therefore, we decided to start publication by a simpler 
version of the experiment known since the end of the 
past century.

Sequences of frames taken before the introduction 
of mercury were considered an episode for control. 
As an episode to control the intrinsic dynamics of 
disturbances in vector fields during mercury diffusion 
(under conditions of advection and convection that 
inevitably arise due to the temperature difference 
between the introduced substance and the cultivation 
medium), frames were taken for the first one and a 
half seconds after introducing the toxicant into the 
medium, until the currents were established, which 
allowed us to observe dynamics and own behavior of 
neurons, without “convective artifacts”. As an episode 
to control the vector fields of the intrinsic behavior 
of neurons, frames taken after the establishment of a 
stationary state of the medium up to the extreme stage 
of involution (denudation) and the decay of trends in 
the formation of the connectome were used.

3. Results

The results and their descriptions are shown in 
the figures, which shall be published in the latest issue 
of the journal. Briefly, the content of the experiment 
states is as follows:
1. The structure of the vector fields of axonal guidance 

in the control (before the introduction of mercury 
into the liquid) demonstrates the presence of a high 
“search activity” of axons, spreading over the entire 
field of view, a kind of “field probing”;

2. after introducing a drop of Hg into the area free 

from cellular structures using a patch pipette, there 
are high-speed convective and advective flows in the 
medium, indicating the beginning of the distribution 
of mercury in the medium;

3. when mercury reaches the ends of neuronal 
structures, denudation begins accompanied by the 
contraction of the lateral processes and protrusions, 
while the machinery of axonal path finding, the 
formation of connections (structural units of the 
connectome) is blocked and ceases to be active (since 
the vector fields of the dynamics of the structures 
corresponding to it cease to be registered);

4. retrograde vector fields indicate further structural 
involution: there is a reduction in the growth cones 
of axons of all neurons located at an accessible 
distance capable of participating in axonal search / 
axonal guidance (relative to each other);

5. the terminal stage of the development of denudation 
processes represents a stationary state; it is fixed 
by the absence of representative vector fields of 
motion estimation (however, in the initial period 
of it, residual oscillations / fluctuations can be 
observed: reversible short-wave contractions, 
which, apparently, are due to the automatism of the 
elements of the cytoskeleton and filopodia).

4. Discussion

The production of aquatic environments that 
simulate known freshwater and oceanic or marine 
environments with an arbitrarily high complexity of 
composition reproduction does not present significant 
technical problems at the moment - up to models 
that include microbiological components, fluid 
models for specific geographical locations, specific 
exposure levels - imitating the photochemistry and 
photohydrochemistry of mercury and the presence of 
specific dissolved or precipitated forms, etc. (Regnell 
and Watras, 2018; Zhu et al., 2018; Jinadasa and Fowler, 
2019; Kimáková et al., 2019; Yan et al., 2019; Luo et 
al., 2020; Branfireun et al., 2020; Helmrich et al., 2021; 
Gallorini and Loizeau, 2021). Moreover, in the presence 
of modern models that reconstruct trends (which is a 
consequence of the analysis of “big data” about natural 
ecosystems), not only reconstruction is available for 
known environmental conditions, but also for arbitrary 
conditions for which a plausible calculation of the state 
in computational models is possible. That is, in fact, 
there are no obstacles to modeling not only statics 
and adaptation, but also possible forms of the norm of 
reaction to the content of mercury in the evolutionary 
process or in bio(geo/hydro-)chemical pathology.

5. Conclusions

Drawing parallels between the bioavailability 
of mercury for consumers of different levels, including 
humans (Broadhurst et al., 1998; Okpala et al., 2018; 
Ong and MacKenzie, 2018; de Almeida Rodrigues et 
al., 2019; Cosio, 2020), it is possible to implement 
multilevel schemes of model systems, in which the 
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conditions for the assimilation of mercury in ecological 
chains as a whole, and not only in individual organisms, 
will be reproduced. As a consequence, it is also possible 
to implement schemes of installations with a modified 
medium (analogues of stop flow or continuous flow, 
including their microfluidic implementations) to 
analyze the response of different neurons and for 
preparations of different types of aquatic organisms 
exposed to different (in terms of Hg content, at 
least ) hydrochemical conditions. Applying to such 
“microchemostatic” systems vector-field methods for 
analyzing the results of microimaging obtained from 
inverted or lensless (which is suitable only for very 
large neurons) microscopes, it is possible to study the 
dependences of the search behavior of neurons in the 
process of axonal guidance depending on environmental 
conditions and the dynamics of its contamination. . In 
our opinion, such prospects can open a qualitatively 
new chapter in the history of mercury ecotoxicology, 
especially in terms of its neurophysiological and 
neuroembryological effects.
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