The formation of the physical and chemical condition along the continuum «land waters – Azov Sea» in the context of iron geochemistry studies

Fedorov Yu.A.1*, Dmitrik L.Yu.1, Dotsenko I.V.1

1 Southern Federal University Bolsheyay Str. 105/42, Rostov-on-Don, 344006, Russia

ABSTRACT. The authors studied the formation of the chemical type and class of water, the isotopic composition of sulfur and oxygen of sulfate ions, the content of *Fetotal* along the continuum «land waters – Azov Sea», i.e. from the moment of iron «resurgence» in mine workings before its partial deposition in the bottom sediments of the Sea of Azov.

Keywords: Water types, iron geochemistry, small rivers, Don River, Sea of Azov.

The uniqueness profile for the study of iron geochemistry consists of the fact that from the North, West, and South on the shores of the Sea of Azov there are reserves of iron ores of the Northern Azov region, Prisivashya, Kerch and Taman peninsulas. From the North - East, the Don River flows into the Taganrog Bay. Its waters receive iron compounds that were formed as a result of natural and man-made processes. The waters directly formed during coal mining in lavas, which, like the host rocks, contain pyrite, are represented by an acidic type of water (by Valyashko, 1955). The chemical composition of these waters is represented by the predominant ions H+, and SO4^2-, (i.e. sulfuric acid) and iron. For the first time, we have proposed the formation of an image of the class, type, and group (SIV) of acidic solutions, which is interpreted as the sulfate class, the fourth type, of the iron group. This corresponds to the scheme (Fig.) of the metamorphization of natural waters. Further, using the classification of O.A. Alekin (1970), which E.V. Posokhov (1965) adapted with the classification of M.G. Valyashko (1955), the evolution of the type of acidic water originating in lavas was traced (SIVFe). When they pass through the mining system and subsequent drainage in the surface environment, the acidic water type changes to a more stable sulfate (type IV) with a high content of dissolved total iron (*Fetotal*). In mine waters and pond aerators, water was characterized as ClNa, SNa, Mg, and ClNa, SNa, Mg, and there was a decrease in the total iron content and an increase in the δ34S and δ18O values.

In small rivers after the passage of water through biological treatment stations, we observed an increase in the δ34S and δ18O values as well as a change of chemical type, class, and group to (SIIIFe) again. During the mixing of the waters of small rivers and the Don River, there was a decrease in the content *Fetotal* and the δ34S values. There was also a transition of chemical composition, type, and group in (SIIIFeNaCa). Notably, in 1938, before regulation of the Don River discharge, the chemical composition of the river water was described by the formula CNaCa. In the Sea of Azov, there was a decrease in the content of Fe *Fetotal* transformation of the salt composition of river waters and its transition to water (ClNaCa) as well as an increase in the value of the isotopic composition of sulfur sulfate ions.

Acknowledgements

The work was carried out with the support of the RFBR, projects No. 19-05-00770.

*Corresponding author.
E-mail address: fed29@mail.ru (Yu. A. Fedorov)
Fig. Mutual transitions of natural water types, by M.G. Valeyashko (1955) with additions (by Nikanorov et al., 1989)

References

