Reaction of inducible hsp70 form on different environmental conditions in Ommatogammarus flavus

Shirokova Yu.A.1*, Madyarova E.V.1,2, Shatilina Zh.M.1,2, Shmatov F.M.1, Timofeyev M.A.1,2

1 Irkutsk State University, Lenin Str., 3, Irkutsk, 664025, Russia
2 Baikal Research Centre, Lenin Str., 21, Irkutsk, 664003, Russia

ABSTRACT. The aim of the research was to estimate heat shock protein expression under the change in ambient temperature and hydrostatic pressure in Baikal deep-water amphipods Ommatogammarus flavus. The expression of the constitutive hsp70 transcript did not change in response to the influence of both environmental factors. The inducible hsp70 form did not differ after the change in hydrostatic pressure in amphipods captured from the depth of 50 and 750 m. High expression of inducible hsp70 transcript was shown during gradual increase in ambient temperature when it reached 22°C. The detected increase in hsp70 expression is associated with the cells reaction to protein damage at the high temperature. Thus, the studied hsp70 inducible form is involved in the adaptation to change in ambient temperature in O. flavus despite the fact that this species inhabits the deep-water zone with stable temperature conditions. It is necessary to analyze other isoforms of hsp in the further studies to find those that participate in the adaptation to high hydrostatic pressure.

Keywords: Baikal, amphipods, adaptations, heat shock proteins, hydrostatic pressure, temperature

Only in Lake Baikal, there is a freshwater fauna of amphipods that inhabit the deep-water zone. Among Baikal deep-water amphipods, the eurybathic species Ommatogammarus flavus is of great interest. This species inhabits a narrow range of temperatures (4±0.5°C) but a wide range of hydrostatic pressures (1.3-130 atm) (Bazikalova, 1945; Kozhova and Izmest’eva, 1998). Brown and Thanje (2014) report that adaptations to temperature and high hydrostatic pressure are interconnected. Several isoforms of heat shock proteins, which are known to protect the cells from the damage caused by different types of stressors, may be involved in the adaptation to high hydrostatic pressure (Ritchie et al., 2018). The purpose of the study was to assess the expression of heat shock protein transcripts (hsp70) under the change of ambient temperature and hydrostatic pressure in Baikal deep water amphipods O. flavus.

The amphipods were collected at Lake Baikal (Bolshie Koty bay) from the depths of 50, 100 and 750 m. Animals from the depths of 50 and 750 m were fixed in liquid nitrogen right after sampling. The amphipods from 100 m depth were acclimated in the laboratory conditions during 7 days at 4°C. After that, the acclimated animals were exposed to the gradual increase (1°C per hour) of the ambient temperature from 4°C (control group) to 22°C and fixed in liquid nitrogen. The expression of constitutive and inducible forms of hsp70 genes was determined with quantitative reverse transcription polymerase chain reaction. Two pairs of primers (Protopopova et al., 2014; Drozdova et al., 2019) were used for these genes. Gpdh was used as a reference gene for the calculation of ΔCt.

It was shown that the expression of both constitutive and inducible hsp70 was at the low level and did not differ in the individuals of O. flavus captured from the depths of 50 and 750 m (Fig.). The level of expression in constitutive hsp70 was 6-fold higher in the amphipods from 50 m and 9-fold higher in the individuals from 750 m then in inducible form. The expression of the studied hsp70 isoforms was at the low level in the control group of the amphipods (after 7 days of laboratory acclimation). In this group, the expression of constitutive hsp70 was up to 40-fold higher in comparison to the inducible transcript. Inducible hsp70 expression enhanced during experimental exposition under gradual increase of temperature. In this case, the expression increased 124-fold in comparison to the control value when the temperature reached 22°C. At this temperature, the level of expression was 3 times lower in constitutive hsp70 then in inducible.

The fact that the expression of constitutive and inducible hsp70 did not differ in O. flavus from different depths indicates that the studied HSP70 proteins are

*Corresponding author.
E-mail address: yulisshirokova2501@gmail.com (Yu.A. Shirokova)

© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
probably not involved in the adaptation to change of hydrostatic pressure. The detected elevation of inducible hsp70 expression during the increase of the ambient temperature in studied species is connected with the reaction of cells to the proteins damage.

In spite of our knowledge that O. flavus mostly inhabits the deep-water zone in the conditions of stable low temperature, the expression of hsp70 in this species increases in the response of increase of temperature. Thus, increase of hsp70 expression, conservative mechanism of heat shock response common for the majority of the species, participates in the adaptation of O. flavus to change of temperature. Further investigations should be focused on the search of heat shock protein isoforms that protect the proteins from changes in hydrostatic pressure.

Acknowledgments

This study was supported by the Russian Science Foundation / Helmholtz Association of German Research Centres (RSF grant number 18-44-06201).

References


Fig. Reaction of constitutive and inducible hsp70 on the change of hydrostatic pressure (A, n = 4) and temperature (B, n = 8).