1. Introduction

Although micro-eukaryotes have been investigated since the 17th century, they still remain understudied, especially in freshwater ecosystems (Debroas et al., 2017). Protists, Stramenopiles, Chromista, Cryptophyta and Fungi comprise micro-eukaryotes. Knowledge about the diversity of the micro-eukaryotic community in freshwater reservoirs is essential for predicting the ecosystem functioning.

The taxonomically and functionally diverse micro-eukaryotes communities have remained vastly unexplored due to the complexity of their identification, peculiarities of the life cycle, the presence of cryptic species, etc.

Currently, the development of high-throughput sequencing has allowed for a more full assessment of taxonomic diversity of communities, including even their hardly detectable members (Mueller et al., 2011; Debroas et al., 2017). Thus, using high-throughput sequencing methods, a large variety of micro-eukaryotes was discovered in freshwater ecosystems (Kammerlander et al., 2015).

Different fragments of 18S rDNA and internal transcribed spacer ITS1 are the most used molecular genetic markers for metabarcoding studies of eukaryotic communities (Bokulich and Mills, 2013; Charvet et al., 2014; Kammerlander et al., 2015). However, recently it has been shown that ITS2 compared to ITS1 is more informative, especially, for a description of the taxonomic composition of fungal communities (Bazzicalupo et al., 2013; Banchi et al., 2018a; 2018b).

Recently, high-throughput sequencing of 18S rDNA was performed for analysis of micro-eukaryote diversity in Lake Baikal, and allowed to investigate the communities of the water column, bottom sediments, as well as green algae communities and their associated organisms (Yi et al., 2017; Mikhailov et al., 2019). These studies provided data on the presence of Fungi from various taxa: zygomycetes, glomeromycetes, chytridomyces, asco- and basidiomycetes, as well as allowed to describe the diversity of the SAR group (Stramenopiles, Alveolata, Rhizaria) in Lake Baikal.

During the past decade, researchers recorded the massive blooming of filamentous algae in Lake Baikal. In some parts of the lake, the changes in the dominant phytobenthos species were observed (Kravtsova et al., 2012). In this regard, the study of micro-eukaryotes would be useful to identify species that may play an important role in these processes.
The aim of this study was to explore the taxonomic diversity of aquatic fungi and protists from the reference area and the area under anthropogenic impact at Lake Baikal using ITS2 marker.

2. Material and methods

The samples were collected in summer, 2018 from two localities of Lake Baikal: reference area, Irinda Bay (54°50′N; 109°40′E; the temperature of water was 12 °C, water transparency by Secchi disc was 6 m), and area with strong anthropogenic impact, near Baikalsk town (51°30′N; 104°15′E; the temperature of water was 11 °C, water transparency by Secchi disc was 3 m). The samples were collected at three depths according to vertical zonality (Izhboldina, 2007) of green alga distribution: 0 – 2 m, 2 – 5 m and 6 – 10 m.

DNA was extracted from the algae, their substrate and filtered water (free from invertebrates) according to the modified protocol described by Doyle and Dickson (1987). For each locality, 60 DNA samples were extracted and mixed for subsequent PCR.

ITS2 rDNA was amplified in PCR using the primers: ITS3 KYO2 F: 5’-GAT GAA GAA CGY AGY AGY RAA-3’ (Asemaninejad et al., 2016) and ITS4 R: 5’-TCC TCC GCT TAT TGA TAT GC-3’ (White et al., 1990).

PCR and Illumina MiSeq paired-end sequencing were performed in the SB RAS Genomics Core Facility (ICBFM SB RAS, Novosibirsk).

The UPARSE pipeline (Edgar, 2013) was used to cluster contigs of all samples. Contigs with 97% similarity were classified into one operational taxonomic unit (OTU).

The representativeness OTUs (number of sequences per OTU) of species rank were used to calculate Shannon indices of community biodiversity (Shannon, 1948). Underestimated α-diversity was evaluated using Chao1 (Chiu et al., 2014). Calculations were performed using the R packages «vegan» (Dixon, 2003).

3. Results and Discussion

After stitching, trimming and chimera removing, total dataset consisted of 89134 reads, where micro-eukaryotes were represented by 9966 reads (3778 reads for Irinda Bay (reference area) and 6188 reads for Baikalsk city (area under anthropogenic impact)). The average length of the reads was 340 bp.

Sequence dataset was clustered into 144 OTUs of species rank, 123 OTUs of them occurred in Irinda Bay and 90 OTUs were found in Baikalsk (Supplementary Table can be found online at https://github.com/barnsys/microeukaryoticcommunity), both communities shared 69 OTUs. The index Chao1 showed that the taxonomic diversity of communities observed and predicted differed by < 10% (Table 1). This means that the amount of input data was sufficient to fully characterize taxonomic diversity (species richness) in each of the two communities studied.

Previous studies of micro-eukaryotic communities in Lake Baikal were performed using 454-sequencing, which allowed produce from several hundreds to 30000 reads per sample in average (Mikhailov et al., 2019). The total amount of reads included not only micro-eukaryotes but also the dominant phytoplankton and metazoa OTUs. Due to a relatively small number of reads, the number of underestimated OTUs of species rank in these studies was 10% or more. In our study, the Illumina MiSeq technology allowed production of a greater number of reads, due to which we obtained reliable estimates of species richness even for rare components of communities.

Shannon's and Evenness diversity indices of micro-eukaryotic communities from Irinda Bay were higher than for those near Baikalsk town (Table 1). The species abundance curve for the communities near Baikalsk town is significantly sharper than that of the Irinda Bay community. The analysis has indicated that micro-eukaryotic community from the area under anthropogenic impact near Baikalsk town is depressed compared to the reference area, Irinda Bay (Fig. 1).

Table 1. The diversity indices estimated for the communities studied

<table>
<thead>
<tr>
<th>Sampling locations</th>
<th>Number of species</th>
<th>Chao1 index</th>
<th>Shannon index</th>
<th>Evenness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irinda</td>
<td>123</td>
<td>124</td>
<td>2.88</td>
<td>0.59</td>
</tr>
<tr>
<td>Baikalsk</td>
<td>90</td>
<td>98</td>
<td>2.04</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Sørensen similarity index of OTUs detected in the studied communities was 65%. In both micro-eukaryotic communities studied, Alveolata was the most numerous group (83–97%) (Fig. 2A). The diversity of Alveolata taxa from both localities was approximately equal, but their abundance was different (Fig. 2A). Among Alveolata, the representatives of Oligohymenophorea, in particular, Ciliata (Vorticella, Pseudovorticella), were the most abundant. Stramenopiles comprised 20% and 9% in communities from Irinda Bay and Baikalsk town, respectively (Fig. 2B). Stramenopiles from both communities were mostly presented by diatom alga Bacillariophyceae (Gomphonema sp., Didymosphenia geminata, Amphipora sp., Fragilaria sp.) and were more abundant in the community from the reference area of Irinda Bay (Fig. 2D). D. geminata was more representative in the reference area, whereas Gomphonema sp. was more abundant in the area with anthropogenic impact. Representatives of both genera are typical for the stony littoral zone of open Lake Baikal. Alveolata and Stramenopiles are key components of aquatic food webs both as a food source (e.g. diatoms) and as major consumers of bacterial biomass (e.g. ciliates) (Slapeta et al., 2005).

Fig. 2. Community structure of micro-eukaryotes from two localities of Lake Baikal. A – total micro-eukaryotic diversity from Irinda Bay and Baikalsk town; B – diversity of Alveolata from Irinda Bay and Baikalsk town; C – diversity of Fungi from Irinda Bay and Baikalsk town; D – diversity of Stramenopiles from Irinda Bay and Baikalsk town.
Fungi comprised 3–16% of the communities studied (Fig. 2A). Fungi contribute significantly to the organic matter decomposition and food web; they affect water quality and taxonomic composition of communities (Zhang et al., 2015; 2018). Fungi from Irinda Bay were more abundant. The bulk of the sequences obtained belonged to unclassified freshwater fungi, probably, due to a small number of ITS2 sequences for identified species of Fungi available through GenBank. The composition of communities from two localities was different. Among Ascomycota, saprotrophs or alga parasites, Alternaria sp. and Cladosporium floccosum were more abundant in the reference area. Representatives of phylum Zoopagomycota, which in general are parasites of micro-metazoan, were observed only in Baikalisk (Fig. 2C). Members of the Chytridiomycota are known to be widespread in freshwater ecosystems, where they act as parasites and decomposers (Johnson et al., 2006; Kagami et al., 2012). Chytridiomycota were more abundant in the area under anthropogenic impact and were mostly represented by Rhizopodium, members of which are phytopathogens and alga parasites (Letcher et al., 2004).

Conclusions

Taxonomic diversity of micro-eukaryotes in the reference area of Irinda Bay was higher than that in the area under anthropogenic impact. Taxonomic composition of Alveolata and Stramenopiles from the communities studied was similar, and the main differences were related with the abundance of their taxa. Communities from different areas mostly differed in taxonomic composition of Fungi. The community from the reference area lacked representatives of Zoopagomycota, whereas they are abundant in the region under anthropogenic impact. In addition, in the latter locality Chytridiomycota were mostly represented by Rhizopodium, members of which are phytopathogens and alga parasites. Representatives of this genus may be recommended as markers for monitoring of the stability of freshwater alga community.

Acknowledgements

We thank I.V. Khanaev and V.I. Chernykh for their assistance in sampling. This study was supported by project No. 0345–2016–0004 (AAAA-A16-11612210060-9) funded by the Government, and by project No. 17-44-388071_r funded by RFBR and the Government of the Irkutsk Region.

References

Banchi E., Amertrano C.G., Stankovic D. et al. 2018a. DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PloS one 13. DOI: 10.1371/journal. pone.0194489


Zhang H., Huang T., Chen S. 2015. Ignored sediment fungal populations in water supply reservoirs are revealed by quantitative PCR and 454 pyrosequencing. BMC Microbiology 15: 44. DOI: 10.1186/s12866-015-0379-7