Supplementary

Taiga fire on Bolshoy Ushkany Island as a model case of forest soil transformation and potential source of eutrophication in Lake Baikal coastal zone

Vashukevich N.V.¹, Timoshkin O.A.²*, Samsonov D.P.³, Kulikova N.N.², Levasheva M.V.⁴, Lukhnev A.G.²

¹ Ural State Agrarian University, 42 Karl Liebknecht Str., Ekaterinburg, 620075, Russia

² Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk, 664033, Russia,

³ Research and Production Association (RPA) "Typhoon" Roshydromet, 4 Pobedy Str., Obninsk, 249038, Russia

⁴ Irkutsk State University, 1 Karl Marks Str., Irkutsk, 664025, Russia

Fig.S-1. Smoke plume of the fire on Bolshoy Ushkany Island (Aqua MODIS image, June 15, 2015). URL: <u>http://www.forestforum.ru/viewtopic.php?f=24&t=18119</u>)

Fig.S-2. View of the water's edge site when exposing soil sections in the nearshore zone of Severnaya Bay.

Fig.S-3. General view of the slope showing post-pyrogenic erosion processes after a fire in 2015.

*Corresponding author. E-mail address: <u>timole.turgenevo@gmail.com</u> (O.A. Timoshkin) © Author(s) 2023. This work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License.

Fig.S-4A. Beach with a ridge of pebbles at the slope foot.

Fig.S-4B. Hole with interstitial waters on the beach (observation point, PO1).

Fig.S-5. Soil sectons 1-3 showing a slope catena at observation point (PO) 1.

Fig.S-6. Profile of soil section 1 (horizons AOpir, AO, Chi, C).

Fig.S-7. Mesomorphological composition of horizon AOpir (soil section 1) carbonized plant debris, clean mineral grains (x40 magnification).

Fig.S-8. Mesomorphological composition of horizon AOpir (soil section 1): fragments of grus with iron coatings, residual carbonates, carbonaceous particles (x20 magnification).

Fig.S-9. Mesomorphological composition of horizon Chi (soil section 1) : mineral grains cemented by humusified matter (x40 magnification).

Fig.S-10. Profile of soil section 2 (horizons AOpir, AO, Cca).

Fig.S-11. Profile of soil section 3 (horizons AU, BMca, BMCca, Cca.

Fig.S-12. Mesomorphological composition of horizon AUpir (soil section 3): effect of high temeprature on mineral mass (brown hue), inclusions of carbonized plant debris (x40 magnification).

Fig.S-13. Mesomorphological composition of horizon BMca, soil section 3 (x40 magnification).

Fig.S-14. Tree stand and grass cover at the location of soil section 4.

Fig.S-15. Burnt anthills at a terraced site.

Fig.S-16. Profile of soil section 4 (horizons AUpir, AU, BM, BMCca). It was used as a background model.

Fig.S-17. Upper part of forest litter slightly affected at the location of soil section 4.

Fig.S-18. Mesomorphological composition of horizon AU, soil section 4, inhomogeneous mineral mass (x40 magnification).

Fig.S-19. Tree stand and soil surface at the location of soil section 5, PO2.

Fig.S-20. Anthill burnt out completely, PO2.

Fig.S-21. Washout of a destroyed topsoil plot at the slope edge, PO2. Arrows mark translocation and accumulation of pyrogenetic products and mineral mass at the slope foot.

Fig.S-22. Hole with interstitial waters on the beach (observatin point, PO2).

Fig.S-23. Profile of soil section 5 (horizons AUpir, AU, BM, BMCca).

Fig.S-24. A fragment of AUpir horizon, soil section 5.